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RESULTS ON CANCELLER CONVERGENCE
IN NONSTATIONARY NOISE

1. INTRODUCTION

The optimal weights associated with an adaptive canceller arc often not known a priori and thus
must be estimated by using finite averaging. Because of the use of estimated weights, suboptimal
canceller performance results. Reed, Mallet, and Brennan [1,2] quantified this performance for the
Sampled Matrix Inversion (SMI) algorithm in the transient state under the conditions that the input
noise must be Gaussian, stationary, and independent from time sample to time sample. They
mathematically demonstrated that the SMI canceller has relatively fast convergence characteristics and
also that the convergence is independent of the input covariance matrix.

In Ref. 3, the Reed., Mallet, and Brennan results were extended to include the effects of non-
Gaussian inputs by using the Gram-Schmidt (GS) canceller {4-9] as an analysis tool. It was shown
that the GS canceller and the SMI canceller are numerically identical, and hence the SMI can be
analyzed by using the GS canceller structure. In Ref. 10, lower and upper bounds of convergence
performance were derived for when the input noise is Gaussian but correlated from sample to sample
(colored input noise). In this report the methodology developed in Refs. 3, 4, and 10 is extended to
analyze a canceller in temporally nonstationary noise. Upper and lower bounds of convergence per-
formance are again derived.

The analysis presented in this report pertains to the adaptive processor in canceller configuration
whereby the derived signal is assumed only to be present in the main channel and auxiliary channels
are used to cancel correlated noises in the main channel. However, Ref. 1 showed that any noncon-
strained linear adaptive array processor can be transformed into a canceller configuration without
changing the output noise power convergence statistics. Hence, the results of this report apply to any
nonconstrained linear adaptive array processor.

2. THE GS CANCELLER

Consider the general N-input GS canceller structure (Fig. 1(a)). Let xp(2), x, (1), ..., xy_;(1)
represent the complex data in the Oth, Ist, ... , N — lth channels, respectively. We call the left-
most input xu(¢) the main channel and the remaining N — 1 inputs the auxiliary channels. The main
channel’s signal consists of a desired signal plus additive noise. The noise consists of internal noise
plus exicinai noise. Cancellation of the signals from external interfering sources relies on the correla-
tion of simultaneously received signals in the main and auxiliary channels. The internal noises on
each channel are assumed uncorrelated between channels. The canceller ope~ates so as to decorrelate
the auxiliary inputs one at a time from the other inputs by use of the basic 2-input GS processor
shown in Fig. 1(b). For example, Fig. 1(a) shows that xy_,(t) is uncorrelated with
X2y, xP @), ..., x§, (1) in the first level of decomposition. Next. the Lutptii channcl what results
from decorrelating xy _,(t) from x5 _,(1) is decorrelated from the other outputs of the first-level GSs.
The decomposition proceeds until a final output channel is generated. If the decorrelation weights in
each of the 2-input GSs are computed from an infinite number of input samples, this output channel is
totally decorrelated with the input: x(¢), x,(t), ..., xy_((1).

Manuscript approved February 1. 1991
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Fig. 1(a) — GS structure
X, Xz
? -3
r— — — —— — — — i — — — —]
| ' GS |
| -
¥ I
! !
' . |
: w = X|x2. /TXTP l
| | - Ly
Fig. 1(b) — Basic 2-input GS canceller
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If we do not have an infinite number of input samples then the decorrelation weight associated
with each 2-input GS canceller is estimated by using finite averaging. The three methods of perform-
ing GS cancellation are nonconcurrent, concurrent, and systolic processing. The last two are
described in more detail in Refs. 3 and 4. For this analysis, we assume nonconcurrent processing
whereby the GS weights are estimated from a block of input data and applied to subsequent or previ-
ous input data. For clarity, data that are used to calculate the GS weights are denoted by lower case
x's and are called the concurrent data. The data to which the computed weights are applied are
denoted by upper case X's and are called the nonconcurrent data.

We briefly describe the nonconcurrent GS canceller. Let x"’ represent the outputs of the 2-
input GSs on the (m — 1) level. The GS weights are computed from these outputs. Then outputs of
the 2-input GSs at the mth level are given by

n=01,... . N-m—1,
Ny = k) = oL k) m =102, .. N — | (1
k=1,2,....K.
Note that v}’ = x,. The weight wi™ seen in Eq. (1), is computed so as to decorrelate x™ !’ with
xV',,. For K input samples per channel. this weight is estimated as
K
L A o k)
k=1
wi = < , (2)
“
PIRES AN
k=1
where * denotes the complex conjugate and | - | is the magnitude. Here k indexes the sampled data.

For the nonconcurrent canceller. let X"’ represent the nonconcurrent data outputs of the 2-input
GSs on the (m ~ 1) level. Then the outputs of the 2-input GSs of the mth level are given by

n=01,... . N—-—m -1,

(m =1 _ (m) Ay ytm)
Xn - Xn - Wy X.\"—m- m=1.2..... N -1 (3)

where X, = X and w!' is calculated by using Eq. (2), i.e., these weights are computed from a

n

block of data that does not include X,,.
For this development unless otherwise noted we make the following assumptions:

I. The samples of xy. xy, ... . xy_; and Xy, X;. ... . Xy, are Gaussian complex ran-

i

dom variables (r.v.) when conditioned on their respective noise power level.

2. These same r.v.’s when conditioned on their respective noise power level are samples from
stationary processes with zero mean.

3. x, (ky)is independent of X, (k) for all k. k,. ny, n,.

4. The desired signal is not present during weight computation and is not in the auxiliary
channels.

5. K=N
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3. OUTPUT MEASURE

Figure 2 shows a simplified N-input GS canceller structure for nonconcurrent processing. GSx v
indicates that an N-input GS structure uses K samples for each channcl to compute the weights interior
to the GS structure. Note for the nonconcurrent structure that the weights are computed from the
Xg. Xy. ... . Xy_, data blocks and are applied to Xy, X, ..., Xy-;. The Oth channel (or the far
feft channel in Fig. 2) is always designated the main channel; the others are called auxiliary channels
or just plain AUXs. ‘tne output of the nonconcurrent processor is denoted by Z,,.. Figure 3 shows
the GS structure for K = oo where the concurrent and nonconcurrent orthogonal outputs are g, and
Z,.n =0,1, 2 ..., N—1, respectively.

X 0 1 X N-1
GS
lxo lx1 . lXN_1 oo, N
GSK,N
Z N-1
 J
\ an ZN-1
Fig. 2 — Representation of nonconcurrent Fig. 3 — GS representation with N
weighting of GS canceller orthogonalized output channels

For any set of interior GS weights estimated, there is an equivalent linear weighting of the input
channel. We denote this equivalent estimated weighting by the N-length vector w, where

> T
W= (Wwg. Wy, ..., Wy_1) 4)

and T denotes the transpose vector (or matrix) operation. For the GS canceller the weighting on the
main channel is constrained to be 1 or wy = 1. Let 02, be defined as the steady state output noise
power residue and

R is steady state input covariance matrix (main and AUXs, an N X N matrix), 5

R is estimated input noise covariance matrix using Xo, X;. ..., Xy_|
(in this case X, consists of noise only),
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,
0, 1S transient output noise power residue associated with nonconcurrent weighting
normalized to o2;,,and

A7 . ~2 . .
O 18 expected value of o, averaged over Xy, X, ..., Xy_;. We call this quantity the
X-average transient output noise power residue.

Note that the last three quantities defined are random variables.

By using the above definitions, we can show that

2 AlD A
~2 I Zy ‘ W Rw
Opyy = 2 - B » (6a)
O min T min

where ¢ denotes the complex transpose. Note that because of assumption 3, Section 2,

T WRW
Ope = —5— (6b)
O min
Also since wq = 1, from assumption 4, Section 2, the desired signal is passed directly to the output

uncancelied. Hence. the output signal power is unchanged from input to output so the expected value
of o}, is equal to the cancellation ratio. We define the normalized output noise power residue as

oL (K.N) = E(65,) = Efony}, )

where E}-} denotes the expected value. Thus the above is the average (or 1st moment) of the tran-
sient normalized output noise power residue. This output measure is commonly used to grade the
convergence performance of the SMI canceller.

4. INVARIANT TRANSFORMS

In the section, we discuss two types of matrix transforms on the input data that significantly sim-
plity the analysis. Let C be any N x N nonsingular matrix. Reference 1 shows that transforming
the input channels x¢, xy, ..., xy_; by this matrix does not change the transient or steady state out-
put residue of the GS/SMI canceller. The GS canceller in the steady state is equivalent to a matrix
transformation of the input data vector in which the matrix is nonsingular and upper triangular.
Therefore, we can transform the input data by using a steady-state GS canceller (with its orthgonal-
ized channels) prior to performing the transient analysis. Figure 4 shows an equivalent configuration
of the GS canceller in the transient state. Here the matrix transform C is implemented by passing the
input channels through a GS,, 5 structure followed by a power equalizer on the output auxiliary
channels. The output powers of the AUX channels after power equalization are equal to ¢2,,. Note
that each input channel into the GSg y structure is orthogonal in the steady state to the other channels.
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The structure shcwn in Fig. 4 illustrates that any GS canceller structure can be divided into two
parts: a deterministic, steady-state frontend processor in which the main channel is decorrelated from
the auxiliary channels and a stochastic backend processor which is driven by uncorrelated equal
powered noise in each channel. The backend processor is independent of the input covariance matrix,
and the auxiliary weights associated with the backend processor go to zero as K — o. Hence the
convergence properties of the GS canceller can be studied by analyzing the convergence properties of
the backend processor whereby the input channels are spatially orthogonal and of equal power.

A second matrix transform to be used in the the forthcoming analysis is now discussed. Let &
be any K x K unitary matrix, i.e., ®®' = I, where /¢ is the K X K identity matrix. We transform

cach input channel K-length data vector, x,, n =0, 1, 2, ... , N — 1 by & such that
x, =®x,=0,1,... ,N — 1, 8)
where x,. n =0, 1, ..., N — 1 is the resultant output data set. If we input this data set to a

GSy v canceller, then the estimated weights using the x,, inputs are identical to those using the x;
inputs [3].

POWER EQUALIZER

Fig. 4 — Residue-equivalent GSy y canceller
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5. GS DECOMPOSITION

In this section we discuss a decomposition of a GS structure that was first introduced in Ref. 3.
A GSg  structure can be decomposed as shown in Fig. 5 into a first-level processor followed by a

GSk n - structure. The output K-length vectors (those used in computing the next level weights) of
the first-level processor can be written as

!
- - XN —1Xp
Yo =Xy — WyXy_|, W, = ————— . n = 0, 1.... ., N -2, 9)
XN -1 XN -1
or
XN -1Xy
A X, — Xy -1
XN -1Xy -
Thus
Xy -1XN )
Y, = {IK——,————— X, . n=2012.... N-—1 (10)
Xy -1XN -1
It can be shown [3] that
XN - 1XN -
Iy — ,— = ®'T'P, (1)
XN-1XN -1
X0 Xy X5 XN-2 *N_1
Xol X)) Xpl oo XN—21XN-1
|  FIRSTLEVELOF GS, . ]
Yol Yif Y2 YN-2
Yoy Y4 Yo Yn-2

nw

Fig. 5 — Decomposition of GSy »
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where ® is a K x K unitary matrix and " is a diagonal matrix whose first element is 0 and all other
diagonal elements are equal to 1. Thus

y, = ®Téx,, n=01,...,N -2 (12)

As discussed in Section 4, we can transform the output data sety,, n =0, 1, ... , N — 2bya
unitary matrix ¢ and not change the equivalent transient weighting vector of the GSg y -, structure.
Thus we write

u, =dy, =Tdx,, n=0,1,... , N -2 (13)
Now set v, = ®x,. By wusing the form of T and setting uw, = (s, uz2, ... .
1) oV, = W Ve v,x)7, where T denotes transpose, it follows from Eq. (13) that
u, =0, (14a)
Upp = v, k=2 3,.... K
Define
Upnp = Vykats k = 1.2....,K— 1. (I4b)
Xo Xn-1 X4 XN XNz XN-1
Xol 1XN~1 X11 1XN‘1 Xz | | Xn-1
GS GS GSJ

4 Z

Fig. 6 - Further decomposition of GSg

NW
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Hence, the number of input r.v.’s to the GSy - _; structure has been reduced by 1 (Fig. 6). Note
U,=Y,.n=01.... N-2

6. NONSTATIONARY NOISE MODEL

In this section we present the temporal nonstationary noise model of the inputs to the GS can-
celler. We consider separately the modeling of internal and external nuise sources. We assume that
the average power level from external intertference sources is not a constant from sampling time to
sampling time. Our methodology is to derive lower and upper bounds on the output noise power resi-
due of the adaptive canceller when these power levels are known exactly at each sampling time. Thus
these bounds are conditioned on the K-specitied power levels of the external noise. Thereafter a joint
probubility distribution function can be assigned to the K-specified power levels and upper/lower
bouads of performance can be derived by integrating the conditioned upper/lower bounds over the
joint probability distribution tunction. More specifically. define

R.. .tky = (N = 1) x (N — 1) auxiliary covariance matrix of the external interterence
sitime steph, k= 1,2, ..., K.
T oK) = N — 1 length cross-correlation vector between the auxiharies and the
main channels of the external interference at time step, k.
k=1,2....K
We <ot
,
Rua.etk) = ox Cug, (15)
_ 2
rumm(/‘) = 0 Com.e (16)
where
Cor. 1S @ constant (N — 1) x (N — 1) normalized auxiliary cross-correlation matrix
ot the external noise sources.
Com o 18 @ constant N — | length normalized cross-correlation vector of tie
external noise sources, and
o Is input power to cach main and auxiliary channel at time instant .
) a , R R .
kA =1.2.....K Assume o # o; ftork, # k,.
The normalization of C,, . and ¢, results from setting all of the o] = 1 and computing the result-

tng auxihiary covartance matrix and the cross-correlation vector between main and auxiliaries of the
external interference. respectively.
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Define
w, = (Wy,wy, ... ,wN_,)T = optimum canceller weighting vector,
R,, = (N —1)x (N —1) auxiliary covariance matrix,
r,m» = N —1 length auxiliary-main cross-correlation vector,

1

R,.. = (N —=1)x (N —1) external interference covariance matrix.

We assume all internal noises are temporally and spatially statistically independent and identically dis-
tributed. zero mean. complex stationary Gaussian noise processes with power o”. which without loss
of generality is set equal to 1. These internal noises are additive in each channel. We note that all
other powers are referenced from o =1

For the noise model described,

W = Ry T (17)
Ruu = Ruu.(‘ + I,V*l (18)
( N o

n = s k Cam.e
Lo K ‘;] 0% 1. ( )

AN
Ruu.r = W E 0/: Ctlu.(' (20)
L K A -1

where Iy _; is the (N —1)x (N —1) identity matrix that represents the internal noise covariance
matrix. Since C,, . is a hermitian matrix, we can decompose it as

Cove =& T &, 21
where
I is the real diagonal matrix of eigenvalues of Cg, .
&, is the unitary cigenmatrix of C,, .. i.e. ., ®, &, = Iy_y.
Define

(Y1.92+ - - - «y~ 1) = eigenvalues of Cy ,.

Q
3
I

; steady state (K — oo) main channel internal noise power residue
(after cancellation),

10
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02 = steady state main channel external interference power residue,

ok = average noise power (internal and external) of the main channel
input, and
ol., = total steady state noise power residue.
It can be shown that
2 2 _ 2 -1
orznin =0; + 0, = 0ip — I‘Zm Raa Fam (22)
and
2 t -2
g; = 1+ Fum Raa Cum- (23)
Thus
2 2 -1
0 = Oipn — rflm Raa Yam — 012- (24)
As mentioned in Section 4, the auxiliary inputs (x;.x,, ... Xy _1)" of a sidelobe canceller can

be multiplied by an arbitrary nonsingular (N — 1) X (N — 1) matrix transform such that the tran-
sient residue is unchanged. Consider the implicit matrix transform illustrated in Fig. 7. In this fig-
ure, &%, . statistically orthogonalizes the auxiliaries with respect to one other. We note that the inter-
nal noise components of v,, n = 1,2, ..., N—1 have unit power since ®¥ is a unitary transform.
The outputs of the %, . transform are denoted by v, y5, ..., yy_;. We optimally weight each of
these by the w{. w1, ... . wy_ |, which minimizes the output residue of vg. This weighting does not
affect the transient residue, as discussed in Section 4. Next vg, v{. ..., and yy_,; are normalized
so that the average power (over all K samples) is equal to I. This normalization does not change the
normalized output noise power residue. The outputs zy,2z,,...,2y_; are the result-
ant outputs of this normalization procedure. When conditioned on their respective power levels, these
inputs entering the GSg y canceller are spatially and temporally statistically independent of one

another. More explicitly if z, = [z,(1), 2,(2), ..., 2, (K))7 is the input vector of K samples then
E {z, (ky) 2% (kp)} = 0, unless ny = n; and k| = k3, 25)
and
1 X 2
— X Ef|z (k)] =L (26)
K .=

It is straightforward to show that

Etlzo(k)lzl = ay(vo of + 0,-2), k=12,....K 27

and

Et1 2,2 = ap(yao} + Dok =1.2..... K. n=1,2,... . N—1 (28)

11
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MAIN AUXILIARIES

%
y
w,’
+ j—
MATRIX
wy TRANSFORM
= x OF
, AUXILIARIES
w

flf————4

o<

<
fett—

~

L
et

~

z- Z
-(d

\

GS

RESIDUE

Fig. 7 — Equivalent canceller using correlated inputs

12
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where
RN N 29)
K =
o;
o T = 30
o

a = |y o + 07! 3D
& =lmo + 11" n=12...,N-1 (32)
We detine
Moy 07 + 07)]
ay(yy 03 + 07)
N = . (33)
aplyy 0% + 07)
and
Cay (v, 07 + D]
o, (v, 03 + 1)
)‘m) — . ] (34)
a, (v, Ui’ + 1)

Thus cach sample in a given channel can be characterized by specified variances. The K-length data
vector in nth channel is completely characterized by X', n = 0,1, ... . N—1. and the fact that (1)
its elements when conditioned on their respective power levels are spatially and temporally statisti-
cally independent all other data samples. and (2) are complex Gaussian processes. We note that
without loss of generality we can order the o3 k = 1,2, ... , Kas

of<o§<o% <0;<.
7. 2-INPUT GS CANCELLER

The basis for understanding the convergence properties of a GS canceller begins with studying
the 2-input GS canceller. We assume the input data noise model as defined in Section 6 and that
these data satisty assumptions (1) through (5) given in Section 2. We set A,.n = 0.1.2.... N -1

13
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equal to a K X K diagonal matrix, where the kth diagonal elements of A, are given by the kth element
of A . We write the output residue as Z,,.. Thus

an = XO - ﬁ)xl: (35)
where

R x4
A (36)

XiX

Furthermore, we can show that the normalized X-averaged transient output noise power residue
is given by

~2 E”an|2‘x0~xl}

Opw = > 37
O min
=1+ |w|?,
x! 2
=1+ ‘—,'xo“T
(x1x7)

Because the clements of X are Gaussian and independent of the elements of x, ,

x| Agx,

Efon %] = 1
o | X1 =1 + .
et (x\x,)?

(38)

Now we can write

x;, = A%y, 39

where v, is a vector of identically distributed, zero mean, unit variance, independent complex Gaus-
sian r v.'s with independent real and imaginary parts. Thus

= viAgA v
Ey v = 1+ ol (40)
(ViAyvy)
It is shown in Appendix A that
K K .
2, (K.2) =1+ % ¥ N ank) F D) 41)
k=1 n=1

n+tk

14
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where
f‘}‘) , 1l =n k=<2;forK=2
/\,,‘
(x(l))K—3
ain, k) = i ( sl <= nk < K ;forK > 2 (42)
IT O =N\
m$=n!k
L
- )\}Il) )\'l) )\LI)
FOP A = : 43)

AL — D Ll B AD D In AD |

8. PRELIMINARY DEFINITIONS AND THEOREMS

Before deriving bounds for the convergence of an N-input canceller, we give preliminary
theorems necessary for obtaining these bounds. Observe A" < N < ... < A}’ and let
e = (e;.ea.....ex) . Define the following K — [ + 1 length vectors

€ ([):(E’l.ez,...,eK_[+|) (44)

ey () = (e, e/41v ... . €k) (45)

The L or U subscript on a vector indicates whether the lower or upper K — / + | elements of that
vector are used. Let the random vector v, be as defined in Section 7. Define the
(K =1+ 1) x (K — 1 + 1) diagonal matrices Ay, and A; , whose diagonal elements are given in
order by the elements of N},(/) and Ny’ (/), respectively. The following quantities are defined aad are
used in evaluating upper and lower bounds of o},.(K, N):

!
U(l. K. x(/)‘)‘to)) = E M , (46)
vViALvp)

and

t
Ld. K. x(l)’x(O)) = E w‘_ . 47
vViAy i)

15
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The following theorems give formulations for U(/, K, X(l’,k‘o)) and L(/, K, )\”),)\‘0’).

Theorem I: Define for! =1,2,... ,N — 1

-
)\—}I--,ISH,kSZ,ifK-!+l=2
[)\il)]K—l—2
aptn, ko LNy = St d=nksK—-1+1L,K-1+1>2
IT AP =\
=1
mm;tn.k

kundeﬁned ifn =k

-
1
A
[)\LI)]K—I—2
K
IT o -
m =1

m#n.k

K- 1=nk=<K,ifK-1+1=2

A

ag(n, k, 1Ny = l=nk<K K-1+1>2

undefined if n = k
(.

(48)

(49)

K—-1+1 ~

Gy, I, Ny = ¥ apn, k, L, NOYFOP M), 1 =1,2,... N-L;1<k<K-1+1,(50)
n=1
n#k

K ~

Gk, I, Ny = ¥ ayn, k, L NOYFQP M), I=1,2,... N- Ll <k <K
n=I
n#+k

)

where F(-, -) is defined by Eq. (43). Then

K=1+1 N0, 2\,
Ud, K, x(l), x(O)) — E ;H‘—II)SH‘__I_
k=1 A

K \9 A
L, K, xll)’ X(O)) — Z ;( 1 +1 }( I +1
k=1 AP

16

Gy, I, \)y 1 =1,2,... ,N -1,

Gk, LAY =1,2,... . N~1.
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(52)

(53)
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Proof: The proof is given in Appendix B.
We use the following variant of the Poincare’ separation theorem [11].
Theorem 2: Let A be a K X K hermitian matrix with eigenvalues \) < \; ... = \¢. Let Bbe a

(K — 1) x K matrix with K — 1 orthonormal columns. Let \{ < \/ ... < Ag_; be the eigen-
values of B*AB'. The following inequalities hold:

M ENS=SMNSENS=S0S M S Mo = M (54)
Note that if the equality is removed so that \; < A; ... < Ag, then
A SN <M <M< < Ao < Aoy < Ak (55)
Thus the A,. n =1, 2, ..., K — 1 are distinct if the \,, n = 1, 2, ... , K are distinct.
Definc
A= N AL ). (56)

Theorem 3: If A" < A < NP < A7 < o0 < AL, < AR < AP, for n =0, I,
N — 1. then

Lt + 1. K. N Ay <« L, K — 1, A7, A0y

< Ul K~ 1, N Ny < yd + 1, K, N aD). (57)

Proof: The proof of this is straightforward and follows by direct comparison of the terms (which are
all positive) in these expressions.

9. BOUNDS FOR NONCONCURRENT GS CANCELLER

In this section, we prove the following theorem pertaining to nonconcurrent GS cancellation in
nonstationary noise.

Theorem 4: If A" < A\ < ... < A\ forn =0, 1, ..., N—1 and assumptions (1) through (5)
hold, then

N-1 N-1
TT0 + L, KXY N < g2 (K, Ny < TT [1 + U (. K, AN 0, A, (58)
=1 =1

Proof: We prove this by mathematical induction. We have shown that the theorem is true for N = 2
(see Section 7 and the definitions of L, U, given in Section 8). Thus, we can assume that the
theorem is true for all integers less than or equal to some upper bound, N — 1. We show that the
theorem is true for N, which implies that it is true for any N = 2. Recall that the nonconcurrent
inputs are equi-power. In addition the samples of x, when conditioned on their respective power lev-
els are spatially and temporally statistically independent of the samples in the auxiliary channels.

17




K. GERLACH

We decompose the GSg n processor as shown in Fig. 5 and further reduced in Fig. 6. Our
methodology 1s to derive bounds on the output noise power conditioned on Xy _;, which we write as
E{1Z,. 17 1xy_,}. Thereafter, we see that o2,.(K, N) = E{|Z,, |} is readily derivable. The K-
fength output vectors y,, N=0, ... . N — 2 of the channels from the first level are given by Eq.
(12).  As discussed in Section 5, the number of concurrent inputs per channel into the succeeding
GSx v | processor is essentially reduced by one. These concurrent inputs are now given by the
(K — D-length vector denoted by u,, n = 0, 1, ... . N — 2 and defined by (14b). It is straightfor-
wurd to show that the main channel samples of u, conditioned on xy -, and their respective power
fevels are spatially and temporally independent of u,. n = 1, ... , N—2_ and that the nonconcurrent
samples, U,. n = 0.1, ..., N — 2 are equi-powered. Hence, assumptions (1) through (5) hold for
the reduced input set (note for assumption (5), K — 1 = N — 1). Hence, the bounds given by
Theorem S can be applied for the equivalent GSg | » - canceller (see Fig. 6) if the temporal corre-
lation matrix for each channel were known.

We define o, to be the minimum output residue of the GSx _, » - ; canceller if we use a fin-
ite K in the first level of canceller seen in Fig. 5 and use an infinite number of samples (steady state)
in the GSx | v | canceller. Let B be a (K — 1) X K matrix formed by using the second thru Kth
rows of ¢ which is defined by Eq. (11). Thus

w, =Bx,. n=0,1,2....,N—2 (59)
A, = E@uul) = B'A,B” | (60)
where A4, in the correlation matrix of w,. n =0, 1, ..., N — 2. Define \{" ', A¥", .. A\¢L, " to

be the eigenvalues of A,. In lieu of the Poincare’ Separation Theorem (see Theorem 2) and the origi-
nal assumption on ordering, (55) holds

Thus invoking Theorem 4, which we have assumed is true n < N — 1, since A"’ <

AV < < AL then the conditional expectation of the noise power can be bounded as
Voo E{|an|2 lxN—l}
I+ LU K =1, XVZ1mDe ’)J < =
[ ! T min
N -2
< II [1 + U, K—1, NN )JO")] (61)
1=1

We outline the rcmaim%er of the proof. The bounds given by (61) can be bounded by those
given by Theorem 3. The o, is multiplied through all the new bounds. Next, the joint probability
distribution function (p.d.f.) of the elements of xy_, is multiplied through all the bounds and
integrated out. Finally Efop,,} is bounded by using the results of Section 7. As a result, Theorem 4
tollows. End of proof.

We have derived upper and lower bounds of the expected value of the output noise power resi-

due of the GS canceller that depend on the values of the elements of A, n = 0,1,... . N=1. As
shown in Section 6 these elements depend on «, y,.n =0.1,... N-1, o, and

18
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,
oi, k = 1,2,... K. Furthermore, «,,y,, and o} depend on C, ., Comes 0%, and o%,

k =1,2,... ,K. We can generalize these bounds by considering o7, k = 1,2,... ,K to be random
variables with a joint distribution function P?; (o3, 03, ..., o%(). We can consider ¢2,.(K,N) to be
the expectation for the normalized canceller output residue conditioned on of, k =1,2,... K, and
define o2, (K.N) to be the expectation of the normalized canceller output residue. Mathematically

this is expressed by

one(K.N) = {0}, (K,N) dP 2(01,03, . .. ,0%). (62)
We note that defining a joint distribution function for of, 03,..., ok changes the original assump-
tions on the input processes. The input process is no longer Gaussian and independent from sample
to sample. However the input process conditioned on 07, 03, ..., ok is Gaussian, and the uncondi-
tloned input process is uncorrelated from sample to sample. Defining a joint distribution for
07. 03. ... . o% allows a variety of nonstationary interference scenarios to be modeled and evaluated

(for example, finite-state jump Markoff processes, continuous or discrete time processes, mixed distri-

butions). Bounds on ¢2,(K,N) are found by integrating the lower and upper bounds given by (58)
over dP (0} a%, e 012().

Finally, we note that one of our assumptions is that \{, A§", ... AP, n =0,1, ... , N=1
are distinct, i.e., N> # A\ fori # j. We can approximate with arbitrary accuracy the case when
these values are not distinct by merely adding or subtracting a small perturbation about each non-
distinct A}’ to make it distinct. These bounds can then be evaluated to within an arbitrary accuracy
of the true value of the bound.

10. SUMMARY

Convergence results for the Sample Matrix Inversion (SMI)/Gram-Schmidt (GS) canceller algo-
rithm in temporally nonstationary noise was investigated by using the GS canceller as an analysis tool.
Lower and upper bounds for the convergence rate of the canceller’s average output noise power
residue normalized to the quiescent average output noise power residue were derived. These bounds
are a function of the number of independent samples processed per channel (main or auxiliary), the
number of auxiliary input channels, and the external noise environment. The external noise environ-
ment was modelled as Gaussian, with a power level specified at each sampling time instant. Further-
more, this model was generalized in the sense that a joint probability distribution function is defined
for the power levels over a canceller processing batch. This leads to the capability of modeling and
evaluating the SMI/GS canceller in a variety of interference scenarios such as continuous or discrete
time processes or a mix of these.
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Appendix A
DERIVATION OF 2-INPUT GS CANCELLER NOISE POWER

In this appendix we find an exact expression for o2,.(K, 2). Starting from Eq. (38), we can
write

T K xl?
E G |xp =1+ 1\ '—,‘l— (Al)
k=1 (x'x)”
where without loss of generality, we have set x = x, and x = (x), x5, ... , xx)'. Set
2 2
Xt Xy
ak=|‘|,= x| -, k=12 ...k (A2)
| JEA
(x'x)

1, . 2
1=+ X x|

n=1\

n#k
We find Efoy}, kK = 1, 2, ..., K. Define
o= |xl? (A3)
K i
= Z |Xn|~- (A4)
"k
Thus
- (AS)
o = ——.
: (z) + 22)°
It is shown in Appendix C that if A", k = 1, 2, ... . K are distinct, then z, and z, have the
following p.d.f.’s:
P:.(Z|)=;}(T;e 0120 (A6)
. _ I
p.,(2) = Y a(n, k)e M 2,20 (A7)
mek
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where
.
T ff)r K = 2
ain, I\') = ﬁ ()\(l))K 3 (AS)
X - ck#n for K > 2.
H ()\(l) _ )\(ll)
m =1
“mEnk
Thus
. o oo I .
IATTRIES So S‘) . p- (2= (22)dzydzs. (A9)
1 22
Subsututing (A6) and (A7) into (A9) results in
K
Eted = X Nat kyFon. N . (A10)
n -1
nzk
where we detine
- I ® oo <1 _x—' o
Fo MV Ay = ——— —_— e " odzy dzs . All
”( n }‘ ) )\j,])xkh 5() S() (:] +:2)2 ¢ dld" ( )

Leta, = 2 /NP s = 25/0). With this change of variables the double integral in (A11) becomes

o o u, ~u,

FoOlh atny = \(h » T 5. Al
o NN = N SU s() N+ Ny e duy du- (A12)

Define

o) oo | U -u.
HOVAERB VIR IES > duduy. Al13
GOW N S() Su AMuy + N ‘ duydu (Al

Note that

AGNY Ay

NG (Al4)

Fo\ o nPy = =af"
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We now find an expression for GO\, A"). By setting z; = Muy, 22 = \Pu,,

TN S I S R DR R S
GO\ = NIV J, 1, e dzy dz. (A15)
n Y

4+

———} . (A16)

Now

+ | —

|

G()\tll)‘ X(A‘H) — E {

where 7, and ;> are independent random variables with

1 AL
I)=—¢€ Al7)
P, (1) " € (
and
2.) = —1 —):_I Al8)
P;:(~2) - x(“ e (
n

An expression for £ {(z; + z,)”'} is derived in Appendix C, and its form is given by (C12). Thus

(N
GOV Ny = l In M (A19)
nos Mk ALD — A ALY :
By using (A14). it follows that
) ()
Fo\ oAy = v 1 — AL In An (A20)
O Rn - Ak NI LD AL g YR
Define FON. AP = MY Fy AP N) or equivalently
- )\}(I) )\21) )\(l)
h Dy — _ — i
F o M) = N [1 NURED In | (A21)

Substituting FON A/ for Fo (V. MY) in (A10) and then substituting (A10) into (A1) results
n

K K
g K. 2)=1+ ¥ ¥ N a(n, ky FOLD ") (A22)
k=1

n=1
n#k
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Appendix B
PROOF OF THEOREM 1

We outline a derivation of U, K. X' Ay, The derivation of LI, K. X' A\ follows the
same methodology . so it will not be presented. Starting with (46), we write

i , ot \ 2
\J ‘\lll‘\l'.l)‘ B A T ! )\ll) )\”) l‘k‘
| VT L [ R Y Y O
[ \',A\I IV A -1 (v AL.IV)
. c
: . 0 ! (.. 12
_I‘ N N o N T (Bl)
L Ay (VA V)
where without loss of generality we have setv = vpand v = (v, va, .., Ve oy 07 Set
wo= Ny k=1.2.....K—-1+1 (B2)
X = (X, X2, ..., Xg ,,‘1)7. (B3)

Substituting (B2) into (B1) and taking the expected value of both sides

£ %{ VALY _* ’é" Mo M E E1k (B4)
) (VIAI_V): A1 )\i“ ‘ (XIX)2 .

L

Set

X :
o = J—f—l— (B5)
(x'x)"

General expressions for Efag} were derived in Appendix A. The upper bound given in Theorem |
follows by using these general expressions with the proper index with respect to /.
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Appendix C
DERIVATION OF EQS. (A6), (A7), AND (A19)
We derive an expression for E{1/x'x} where x = (x|, xa, ... . xg)" and each x, is an indepen-

dent, zero-mean. complex Gaussian random variable with variance equal to ;. We assume that
M. # N, forky # k>and K = 2. Set

T T RS R 2 C RS Eo (Cl)
and
w = x|, k=12 ....K (C2)
Now u; is real and has a p.d.f. given by
LN
Pu (W) = — ¢ cuy =0 (C3)
M
and characteristic tunction:
! 1
P, (w) = — T (C4)
k jw -
M
Hence since the i are independent, the characteristic function of 7 is given by the product of the
characteristic functions of wy, k = 1,2, ...  Kor
k &1 l
Pw) =(—D" T ~ 1 (C5)
k=1 Dk Jjw — L
N

By using a partial fraction expansion of P.(w) and the inverse characteristic function transform,
it can be shown that

K —
py= ¥ qe ™ . 220, (C6)
k=1
where
A2
4 = . (Ch
H ()‘k - )‘n)
n=|\
n,;tk

27




K. GERLACH

We now show that

E{L} P (C8)
x'x P N

Setw, = /N, k =1, 2, ..., K. Define a function of F such that
—wh
F(w,,wz,...,wk)=jo Ea,\ (C9)
K
where a;. k=1,2,...,K are arbitrary constants satisfying the constraint ) a, = 0. We note that

k=1
K
for the a; defined by (C7), F(w),w;.....w = E{1/x'x} and ¥ q, = 0. We can show that F
k=1
exists if all w; > 0. Note that the summation and integration cannot be interchanged in (C9) because
the resultant would be unbounded. It is straightforward to show that 0F /3wy, k=1, ..., K exists
and is equal to —a; /w;. Furthermore, we can show that the only form of F that satisfies these K par-
tial derivative equations is

K
Flw, wy, ....wg) = —YagIneg +C (C10)
k=1
where C is a constant to be determined. Since
K
Ya =0, (Cil)
k=1
for all w; equal to w using (C9), it follows that F(w, w, ... , w) = 0. By using this fact and (C11)

in (C10), C = 0 and (C8) follows.

Substituting the expressions given by (C7) into (C8) results in

1 K f In N\,
E{} Eme
= I—I _x")

=1
#k

3=

We note that for K = 2,

i Ll 1 M (C12)
x'x NN A
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